VISHAY INTERTECHNOLOGY, INC.

ESTAMAT MH
Microprocessor-Controlled Power Factor Controller

ESTAmat MH
 Power Factor Controller

4

TOP PERFORMANCE FOR REACTIVE POWER DISTINCTIVE FEATURES

- Circular switching mode
- Four quadrant operation
- Zero voltage tripping
- Great variety of switching programs
- Measurement current range: $25 \mathrm{~mA}-5 \mathrm{~A}$
- C/k value range: $25 \mathrm{~mA}-1.5 \mathrm{~A}$ (step size of 0.025 A)
- Desired $\cos \varphi$ range: 0.85-0.95 cap.
- Display of C.T. secondary current
- High resistance to faults due to mains harmonics
- Changeover from automatic to manual operation
- Easy selection of individual menu options

TECHNICAL DATA

- Fault alarm in the display and by potential-free relay contact
- Switching programs and energized steps can be set
- Easy settings of parameters via keyboard (directing the menu)
- Switching delay times to be set or optimized by automatic self-setting
- Connection to C.T. 5 A or C.T. 1 A possible, without changeover or reprogramming
- Desired values, such as target power factor, type of switching program, number of switching steps, C/k value, and the switching delay time can be locked and thus protected against unauthorized operation. Locking is not activated at time of delivery.

CONNECTION DATA

Operating voltage, Phase/Neutral
Power consumption
Fuse incorporated in the device
Connection
External fuse

230 VAC $\pm 15 \%, 50 \mathrm{~Hz}$ (at option, 60 Hz and/or 120 VAC) 8 W max.
glass tube fuse $5 \times 20 \mathrm{~mm}, 100 \mathrm{~mA}$, slow blow
via 14 terminals (MH 12:20 terminals) socket connector (female) with screw-type contacts; fixing of socket connector by means of two screws 10 A max.

MEASURING CIRCUIT

Precision	$:$ category 1
Measuring frequency	$\vdots 50 \mathrm{~Hz}($ optional 60 Hz$)$
Measuring voltage	\vdots internally connected to the supply voltage
Measuring current range	$\vdots 25 \mathrm{~mA}-5 \mathrm{~A}$
Measuring current consumption	$\vdots 1 \mathrm{VA}$
Measuring current overloading	$: 20 \%$ maximum permanent
Measuring current C.T.	$: \times / 5 \mathrm{~A}$ or $\times 1 / 1 \mathrm{~A}$ category 1, without changeover
Filter at input	$:$ each measuring circuit is provided with a band-pass filter

CONTROL CIRCUIT

Number of steps
Switching delay time

Re-switching blocking delay time
Fault alarm
Alarm relay
Loading capacity of alarm contacts

6 or 12 capacitors
2-500 s as a function of reactive load or specific setting possible
($10,30,60,120,180,300,500$ seconds)
option set to 20,60 or 180 seconds
current too low or overcurrent in measuring circuit and under-compensation
by means of alarm contact in case of undercompensation or interruption of voltage
5 A/265 VAC;
the relay contacts of the steps are bridge with an anti-interference capacitor $0.047 \mu \mathrm{~F}$

MECHANICAL DETAILS

Front plate
Panel cut-out
Depth
Weight
Design
Type of protection

Ambient operating temperature
Position of installation
$142 \times 142 \mathrm{~mm}$
$138 \times 138 \mathrm{~mm}$
approximately 70 mm
0.8 kg maximum
to EN 50178, protective class II, and EN 61010-1,
$\boldsymbol{C E}$ - Certification: EN50081-2, EN61000-6-2
IP 40 with multipoint connector mounted (IP 55 upon request, but only for the frontside protected by a lockable controller cover, when controller is mounted in the cubicle door)
$-25^{\circ} \mathrm{C}$ up to $+60^{\circ} \mathrm{C}$
at option

FUNCTIONS AND MODES OF OPERATION

Inductive reactive current is an additional load on cables and switching devices, and also increases the expenditure for energy to be paid to the Electrical Power Supply Utility although the so-called reactive energy is, de facto, no real energy consumption. This inductive reactive current will be compensated by means of a power factor controller with the related capacitor units.

The ESTAmat MH is a Power Factor Controller based on both longstanding know-how in the field of reactive current control technique and the latest developments in micro-electronics. All functions of the ESTAmat MH are controlled by a microprocessor.

A protective device (watchdog) permanently monitors the processor for trouble-free operation.

Correct coordination of measuring current and measuring voltage is prerequisite for the trouble-free operation of the ESTAmat MH. Usually, the current is taken from phase L1, while the voltage is tapped between phase L1 and N .

The capacitors are switched in accordance with the set switching program by the 6 (type MH6) or the 12 (type MH12) relay contacts.

AUTOMATIC OPERATION

When set to automatic operation, the P.F. Controller will automatically
switch in the capacitors, as a function of:

- the demand for capacitive reactive power
- the deviation of the $\cos \varphi$ value from the set desired value
- the set C/k value

For test purposes, capacitors may be switched in or out manually at any time, even with automatic operation mode.

MANUAL OPERATION

When the P.F. Controller is set to manual operation, capacitors can be switched in or out manually. In this case, the automatic control is not effective, i.e. the capacitors switched-in remain permanently switched-in.

Manual operation mode is indicated by the flashing of the LED auto.

CIRCULAR SWITCHING MODE

The switching sequence follows the FIFO principle: First-IN-First-OUT. If the switching-in follows the order 1-2-3-4-5, then the switching-out of the capacitor steps will follow that same order.

The circular switching mode distributes the load uniformly on all contactors and, thus, on all capacitors.

A further advantage of this mode is that a capacitor step, when switched out, has enough time for discharging before it is switched in again after the re-switching blocking delay has elapsed.
The advantages of the circular switching mode also help avoid the so-called hunting operations. With the switching sequence 1:2:2:2:2:2, for example, the "double-size" steps are switched-in circular sequence, and the "single-size" step is used only for fine tuning.

START-UP PROCEDURE

In order to start up the P.F. Controller, the following data must be entered into it via its keyboard:

- switching programs and number of energized capacitor steps
- desired $\cos \varphi$

- C / k value

- specific switching delay times, if requested

The standard values set at the factory will be indicated one after the other, for two seconds each, upon application of the supply voltage.

DISPLAY ON THE FRONTPLATE

Indicated on the P.F. Controller's frontplate are the following data, via the four-digit seven-segment display:

- actual desired $\cos \varphi$
- actual C.T. secondary current
- set parameters
- fault alarm symbols
via the LEDs 1-6 (1-12 respectively):
- the switched-in capacitor steps
via the LEDs "IND" or "CAP:"
- exceeding of the C / k threshold value
- interruption of the power factor control operation via the remaining LEDs:
- the modes or parameters called up

SWITCHING PROGRAMS

The following types of switching programs can be set:

1.	$1: 1: 1: 1: 1 \ldots$	7.	$1: 2: 2: 2: 2 \ldots$
2.	$1: 1: 2: 2: 2 \ldots$	8.	$1: 2: 3: 3: 3 . \ldots$
3.	$1: 1: 2: 2: 4 \ldots$	9.	$1: 2: 3: 4: 4 \ldots$
4.	$1: 1: 2: 3: 3 \ldots$	10.	$1: 2: 3: 6: 6 \ldots$
5.	$1: 1: 2: 4: 4 \ldots$	11.	$1: 2: 4: 4: 4 \ldots$
6.	$1: 1: 2: 4: 8 \ldots$	12.	$1: 2: 4: 8: 8 \ldots$

The step LEDs indicate permanently the number of activated steps. These must correspond with the activated terminals at the P.F. Controller.

SWITCHING DELAY TIME

The time between exceeding the C / k value and starting the switching operation is defined as switching delay time. This transgression must be given permanently during the whole switching delay time. The optimal switching delay time can either be established by the ESTAmat MH automatically as a function of the demand for reactive
power or, it can be specified by the user. When established automatically, switching delay times are possible in the range between 2 and 500 seconds.

Manual setting may be: $10,30,60,120,180,300$, and 500 seconds.

BLOCKING DELAY FOR RE-SWITCHING

The P.F. Controller can re-switch in a capacitor only after it has discharged to an acceptable level. The standard value is set to 20 seconds. The value can also be set to 60 or 180 seconds.

Consequently even with manual operation, an immediate re-switching is blocked.

As long as the blocking delay for re-switching of a required capacitor step continues, the decimal point of the $\cos \varphi$ digital display flashes.

OPTIMIZED SWITCHING PERFORMANCE

The "ESTAmat MH" measures continuously the demand for reactive power and its variations, and always switches in or out the largest possible capacitor step.

With a power factor correction equipment of 25:25:50:50:50 kvar, for
example, the P.F. Controller will immediately switch in a step of 50 kvar in case of a demand for reactive power of at least 35 kvar (i.e. 70% of 50 kvar). This way, the number of switching operations is reduced, which results in an increased life expectancy of both the capacitors and the contactors.

FILTERS AT THE INPUT

Electronic filters at the input of each measuring circuit allow for very high precision of the $\cos \varphi$ measurement related to the mains frequency and independent of the curves of current and voltage.

This is of advantage especially for consumers suffering from harmonic loads above average.

C/k VALUE

The C/k value is the tripping value of the power factor controller. The value represents the controller's reactive current tripping threshold in ampere-reactive. When the reactive portion of the total current load exceeds the set C/k value, one of the two LEDs ("ind" or "cap") will indicate this condition.

The C/k value can be set in the range of 0.025 A to 1.5 A max, step size of 0.025 A .

NO VOLTAGE RELAY

When the supply voltage is not present, the P.F. Controller switches out all the capacitors.
Upon return of the supply voltage, the capacitors will be re-switched
in after the blocking delay for re-switching has elapsed. This makes sure that the capacitors will be sufficiently discharged and prevents an unintentional switching in phase opposition to the mains voltage.

FOUR QUADRANT OPERATION

The ESTAmat MH can also be used for consumer equipment subject to energy flow reversal.

ESTAmat MH

Power Factor Controller

SUMMATION CURRENT TRANSFORMER

Activation of P.F. Controller via the summation current transformer.

FAULT ALARM RELAY

The fault alarm relay is an additional means of monitoring operations. If a consumer equipment has not been sufficiently compensated for more than 15 minutes, this status will be signalled by the fault alarm. As a result, a reduction in compensation output below acceptable values, or other malfunction, can be identified and corrected in time.

The potential-free contact of the alarm relay is closed when the supply voltage is not present or when the undercompensation fault alarm has operated.
The fault alarm contact is not bridged by a spark-quenching combination (RC bridge).

FAULT INDICATION

Faults are signaled by the two control LEDs "ind" and "cap" and by a symbol in the display.
Following fault symbols can be displayed:
\equiv meaning that measuring current is too low. After this fault
alarm having been on display for more than 5 minutes, the capacitors will be switched out.
$\equiv \mathbf{O}$ meaning that the measuring current is too high.
LED's flashing meaning that undercompensation is given.

CONNECTION DIAGRAM

/ Bouviohr

Vor Abziehen des Steckers Wandler kurzschlieBen Before removing plug, short-circuit C.T. terminal

SEMICONDUCTORS:

Rectifiers • Small-Signal Diodes • Zener and Suppressor Diodes • MOSFETs

- RF Transistors • Optoelectronics • ICs

PASSIVE COMPONENTS:

Resistive Products • Magnetios - Capacitors • Strain Gages and Strain Gage Instruments

- PhotoStress ${ }^{\circledR}$ Instruments • Transducers

THE AMERICAS
UNITED STATES
VISHAY AMERICAS
2100 WEST FRONT STREET
STATESVILLE, NC 28677
UNITED STATES
PH: +1-704-872-8101
FAX: +1-704-872-8023

ASIA

SINGAPORE

VISHAY INTERTECHNOLOGY
ASIA PTE LTD.
25 TAMPINES STREET 92
KEPPEL BUILDING \#02-00
SINGAPORE 528877
PH: +65-6788-6668
FAX: +65-6788-0988

P.R.C.

VISHAY INTERTECHNOLOGY
ASIA PTE. LTD.
(SHANGHAI REPRESENTATIVE OFFICE)
ROOM D,15F, SUN TONG INFOPORT PLAZA
55 HUAI HAI WEST ROAD
200030 SHANGHAI
P.R.C.

PH: +86-21-6283-1036
FAX: +86-21-6283-1039

JAPAN

VISHAY JAPAN CO., LTD.
SHIBUYA 3-CHOME SQUARE BUILDING $3 F$
3-5-16 SHIBUYA
SHIBUYA-KU
TOKYO 150-0002
JAPAN
PH: +81-3-5464-6411
FAX: +81-3-5464-6433

EUROPE

GERMANY

VISHAY ELECTRONIC GMBH
DIVISION ESTA
HOFMARK-AICH-STRASSE 36
84030 LANDSHUT
GERMANY
PH: +49-871-86-0
FAX: +49-871-86-25-06

FRANCE

VISHAY S.A.
4, RUE DE SALONIQUE
95101 ARGENTEUIL
FRANCE
PH: +33-1-39-98-22-00
FAX: +33-1-39-98-22-05

GREAT BRITAIN

VISHAY LTD.
PALLION INDUSTRIAL ESTATE
SUNDERLAND, SR4 6SU
GREAT BRITAIN
PH: +44-191-514-4155
FAX: +44-191-567-8262

